CCF Transactions on Pervasive Computing and Interaction (2020) 2:219-239
https://doi.org/10.1007/542486-020-00049-9

SURVEY PAPER q

Check for
updates

Vibration-based pervasive computing and intelligent sensing

Yandao Huang'® - Kaishun Wu'

Received: 14 June 2020 / Accepted: 15 October 2020 / Published online: 6 November 2020
© China Computer Federation (CCF) 2020

Abstract

We are now in the era of the Internet of Things (IoT). Various smart devices can upload their sensor data that characterize
our physical world’s environment to the server. The researchers benefit from sufficient data to conduct a series of intelligent
sensing research, which enhances our daily experience. However, few of the device-free sensing applications using wireless
signals have widely penetrated the real-world. In recent years, the underlying property of mechanical vibration is exploited
in many sensing applications. Vibration offers a brand new perspective on how we think about intelligent sensing. Leverag-
ing the vibration signal for sensing is possible to break the bottlenecks encountered by other sensing technologies. In this
paper, we first provide a technology overview of vibration models and property that has been widely used in recent years.
We then survey the existing vibration-based intelligent sensing systems and summarize the representative work in terms of
localization, user authentication, health monitoring, and communication. The survey concludes with the key challenges and

future research direction of using vibration signals for novel human-centric sensing.

Keywords Pervasive computing - Vibration sensing - Vibration communication - Indoor localization - Human activity

monitoring - Authentication

1 Introduction

On the basis of the IoT era, with the combination of artificial
intelligence technology, all the connected devices will fur-
ther have the ability of intelligent sensing in the foreseeable
future. They will turn into intelligent devices with independ-
ent thinking, vision, hearing, touch, and smell. Intelligent
sensing technology will surely have huge application pros-
pects and needs in all aspects of consumer and industrial
fields, and related research has gradually become hot topics
learned over the past decade.

Intelligent sensing technology aims to use sensors in
embedded devices (e.g., vision sensors, acoustic sensors,
optical sensors, wireless radio frequency transceiver, inertial
measurement units, etc.) to digitally characterize everything
happens around the device in the physical environment.
As for data analysis, the dominant approach is to put the
data sets obtained using signal processing technology into
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a series of different artificial intelligence frameworks, and
then we can obtain the desired information.

Based on the sensor deployment setting, intelligent sens-
ing can be divided into two categories, namely, device-based
and device-free. Device-based sensing requires users to wear
one or more wearable devices for individual-level data col-
lection and analysis. Device-free does not require the human
body to wear any equipment, but through the infrastructure
deployed in the surrounding environment (e.g., cameras,
Wi-Fi access points, Bluetooth beacons, ultrasonic beacons,
LED arrays, etc.) to collect data for inference. It is more
user-friendly and natural not to wear devices. However, it is
easier to be affected by variant space, time, and light condi-
tions, and thus it is more challenging and meaningful for the
research. Therefore, a large number of scholars are attracted
to conduct research on intelligent sensing in the past decade.

Among the current sensing technologies, computer vision
is the most mature means. By capturing a large amount
of image data, there are already many related works that
can provide high accuracy and reliability to some specific
sensing applications. However, there are still many limita-
tions for computer vision, such as (1) non-line-of-sight; (2)
limited field of view and high deployment density; (3) pri-
vacy issues; (4) high power consumption and computation
overhead.
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In order to avoid the problems in using computer vision
methods while retaining or even enhancing the sensing capa-
bilities of the system at the same time, a large number of
researches propose device-free sensing applications based on
wireless signals, including RFID (Wang et al. 2019), WiFi
(Liu et al. 2019), UWB, acoustics (Chandrakala and Jayalak-
shmi 2019) and visible light (Pathak et al. 2015). For RFID,
the sensing range of low-frequency tags is small, and the
anti-interference ability is poor. The sensing range of high-
frequency tags such as 2.4 GHz RFID can reach 200 m, but
RFID readers and tags’ costs are too high. When using WiFi
signals, the system may occupy the network transmission
bandwidth or need to arrange antennas array to eliminate
the multipath effect interference. UWB technology requires
sophisticated and expensive hardware to functionalize the
ultra-wide bandwidth and accurate time synchronization.
Acoustics based system is generally susceptible to envi-
ronmental noise. For high-resolution ultrasonic, its effec-
tive signal attenuation is faster when transmitted in the air,
and its penetration and propagation range is limited. What
is more, it requires the deployment of ultrasonic beacons,
which increase the user overhead. As for visible light, the
weak resistance to environmental light variation results in
degradation to the system performance. In the case of non-
line-of-sight conditions (e.g., dark environment and block-
age of walls or objects), the system is even unable to work.
In general, it is unfortunate to see that few of the sensing
technology mentioned above has widely penetrated the
real-world.

However, in recent years, vibration-based intelligent sens-
ing has attracted a large number of researchers. It gives a
brand new perspective and provides a possibility to break
the bottleneck encountered by today’s sensing technologies.
This possibility mainly benefits from some advantages of
vibration signals, such as (1) compared with the radio fre-
quency signal, the multipath effect of the vibration signal is
obviously weaker, and the complex environment above the
floor will not severely interfere with the signal propagation;
(2) the vibration signal can penetrate through the wall, and
the propagation range and unit effective range is larger; (3)
the cost of the vibration sensor is low, which contributes to
large-scale deployment; (4) the system hardware is relatively
simple but supports a variety of different applications.

In this paper, we investigate the state-of-the-art vibration-
based sensing studies on human-centric applications. Based
on the application scenarios, we broadly divide these studies
into four categories: localization, user identification, health
monitoring, and communication. Specifically, localization
involves indoor scenarios (e.g., locating an occupant in a
room) and the localization of finger interaction on the physi-
cal plane (e.g., table surface) and body skin. User identifica-
tion mainly focuses on extracting vibro-biometrics from on-
body vibration signals and identify users in a non-traditional
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way. Health monitoring ranges from monitoring daily indoor
activity (e.g., walking gait and fall) to analyzing self-induced
body vibration (e.g., the vibration of joint motion, muscular
movement, and heartbeat). Communications refer to transmit
effective signals through vibration wave and the eavesdrop-
ping of secret information through vibration channel. The
contributions of this paper can be summarized as three-fold:

e We provide an overview of some key models and tech-
niques presented in the recent literature and discuss
them in a more detailed way. We believe this will inspire
researchers to explore the vibration property further and
propose more novel applications.

e  We present the first comprehensive review of literature
in the field of vibration-based intelligent sensing. We
broadly categorize the literature into localization, user
identification, health monitoring, and communication,
enabling researchers to get up to this emerging field
quickly.

e We also present the discussion of limitations and future
treads regarding vibration-based intelligent sensing.

The remainder of this paper is organized as follows. We
first review some key vibration models and properties used
in recent literature to perform vibration sensing in Sects. 2
and 3. Then in Sect. 4, we introduce the four categories of
vibration-based intelligent sensing applications. In Sect. 5,
we discuss the limitations and the prospects of vibration-
based sensing. Finally, we conclude the survey in Sect. 6.

2 Vibration model
2.1 Single-of-freedom model

The vibration-based sensing applications we discussed
mainly focus on the mechanical vibration caused by an
external force. The externally applied force imposes its
energy into the mechanical system and causes displacement
of the system. If the applied force is harmonic or can be
modulated by a vibration generator, we term it active vibra-
tion. In opposite, a random or a natural applied force, like
a finger tap or heartbeat, whose vibration pattern is unpre-
dictable and unmodulated, is taken as passive vibration. To
model the response of a system to external excitation, we
typically consider the spring-mass-damper (SMD) model
with a single-degree-of-freedom (SDoF) as starting (Rao
2010). The SMD model can reveal the motion characteristic
in a simplification way by considering the mass m, spring
coefficient k, and damping ¢ of the system, as shown in
Fig. 1.



Vibration-based pervasive computing and intelligent sensing

221

Mass(m)

I
!

k F(t) c

LEIL AL LTI

Fig. 1 Illustration of single-degree-of-freedom model (Chen et al.
2019)
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When a harmonic excitation F(t) = F, cos ot is applied
to the rigid body, we have the following differential equation
of motion based on Newton’s Second Law:

2
X)) | B0 o, ()

F,coswt =m
0 dr dt

We can assume the particular solution of Eq. (1) to be:
x(t) = X cos(wt — @), 2)

where X and ¢ indicate the amplitude and phase of the
responding vibration wave. By substituting Eq. (2) into
Eq. (1) and using trigonometric relations, we have the solu-
tion of Eq. (1) as:

_ Fo _
o= V (k= mw?)? + 2w? cos(r=9) @)
¢ = arctan ﬁ 4)

The solution describes the particle movement of the
vibration source. Based on the SDoF model, a more complex
and accurate model with multiple degrees of freedom can be
deduced and analyzed.

2.2 Three states of vibration
If there is a pendulum dropped from its equilibrium position

and left to itself, it will oscillate with natural frequency .
When a harmonic excitation with frequency w is applied to

the mechanical system with natural frequency ,, the actual
motion of the system is a kind of superposition of vibra-
tions at two frequencies w and w,. At the beginning of the
excitation, where two kinds of vibrations frequency are both
prominent, is termed as transient-state. After a certain time,
the system is mainly dominated by the undiminished excita-
tion at frequency w, and the system moves on to steady-state
(French 1971). When the external excitation is dismissed,
the system turns into decaying-state and dies away eventu-
ally for the mechanical energy is depleted by the damping
over time. The differential equation of motion in decaying-
state is given by

d*x(t) + cdx(t)

m e o + kx(t) = 0. 4)

Without an external force, the amplitude of wave attenu-
ates over time. By calculating the ratio of amplitude between
two successive periods, we have the decaying factor A as:

X0 rL
“xe+) ¢ ©)

Figure 2 gives an illustration to the three states of the
vibration signal that is generated by a smartphone’s motor.
The vibration frequency of the motor is stable. The motor
is activated for 90 ms and then paused for 10 ms (marked as
O). In transient-state (marked as A), the vibration frequency
change over time and the frequency variance is much larger
than the steady-state (marked as B).

3 Vibration wave property

We discuss the vibration of a system which is regarded as
an equilibrium point using the SMD model in last section.
Then we will present the property of vibration wave that
propagates from a vibration source. We mainly present the
properties that are leveraged for intelligent sensing field.

3.1 Vibration wave propagation

Before we address the vibration-related problem, we first
have to investigate the propagation and attenuation char-
acteristics. It is intuitive that the vibration wave will lose
energy during the propagation from one position to another
due to the propagation medium’s damping. The relation-
ship between the attenuation of amplitude and propagation
distance can be modeled as (Abdullah and Sichani 2009):

A(d) = Age™™, (7
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Fig.2 Frequency variances of
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where A, is the initial amplitude of vibration source, d is the
propagation distance and « is the damping coefficient which
can be further represented as (Kim and Lee 2000):

@=—, ®)
where 7 is the loss factor, 4 is the wavelength. The loss fac-
tor is related to the hysteretic damping ratio of the medium.
Given a certain medium, the vibration wave of higher fre-
quency (shorter wavelength) will attenuate faster than that
of lower frequency.

3.2 Dispersion

The dispersion (French 1971) is a common phenomenon that
is easily found in different kinds of media, but with different
underlying physical mechanisms. We can see it happening
when white light passes through a prism and is broken down
into different colors. The wave velocity of red light in glass
is greater than that of blue light.

In general, the dispersion of the mechanical wave we dis-
cuss here means different frequency components of a vibra-
tion wave travel at different speeds in the medium. As shown
in Fig. 3, fingernail tip touch sounds on a wooden table are
captured, and the waves with higher frequency (shorter
wavelength) arrive earlier than lower ones (Kim 2018).

What is more, the time difference of arrival (TDoA)
between two different frequency components is linearly
proportional to the propagation distance from the vibration
source (denoted as D) as follows:

_pf_ L __1
T(f")_T(ff)‘D<V<m V(f,-))’ ©)
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where T(f) and V(f) is the arrival time and velocity of vibra-
tion at frequency f.

3.3 Body wave and surface wave

The tiny excitation on the physical surface will cause the
medium particles to reciprocate near their equilibrium
positions and propagate far away in the form of vibrational
waves. Vibration waves can be divided into two categories
according to the characteristics of the medium particle
motion and the wave propagation law; one is the body wave;
the other is the surface wave.

Body waves can be divided into longitudinal waves (i.e.,
primary waves, P-waves) and transverse waves (i.e., Second-
ary waves, S-waves). P-waves travel along the propagation
direction of the vibration waves, causing the compression
and dilation of the medium particles. The propagation direc-
tion of the S-waves is perpendicular to the vibration waves.
This type of wave travels along the surface of the medium
at a velocity of about 60-70% of P-waves, but it is more
powerful due to its lower energy decay.

Under certain conditions, body waves can form surface
waves, which can also be divided into two types, namely,
Love waves and Rayleigh waves. When the P-waves and
S-wave meet at the medium interface, they interfere with
each other and superimpose to produce surface waves.
The surface wave has lower frequency but stronger energy,
mainly propagating along with the medium interface.! The
propagation of the Love wave is relatively limited, and it is
not easy to observe from the vibration sensor reading. In
contrast, the Rayleigh wave makes the synthetic motion of

! The medium interface indicates the contact surface of two types of
medium, like the surface between air and earth.
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d Rayleigh waves (Santos et al.
2019)
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Table 1 The comparision of different types of wave in terms of veloc-
ity, frequency, decay and power

Wave types Velocity  Frequency Decay Power
P-waves Fastest Highest  distance Weakest
S-waves Medium  Medium  distance Medium
Rayleigh waves ~ Slowest ~ Lowest  distance!/?  Strongest

the medium particles elliptical, resulting in more destruc-
tive deformation. As shown in Fig. 3, P-waves, S-waves,
and Rayleigh waves are typically selected as the effective
waves for vibration wave analysis, and the comparison of the
characteristics between them is listed in Table 1.

In the vibration-based sensing applications, the wave
propagation characteristics can be leveraged to infer the
information in our physical world. For example, an impact-
induced vibration, like a finger tap, is dominated by Rayleigh
waves. On the other hand, a friction-induced vibration, like
a finger swipe, is dominated by S-wave (Pan et at. 2017).

3.4 Vibration inside the human body

The human body is a good example to stand for the composi-
tion complexity of the medium. It exhibits diversities among
people with different height, weight, and body mass index
(BMI). The biodiversity also gives a variety in terms of the

Fig.4 The transverse wave
propagates along the skin sur-
face as ripples (Harrison et al.
2010)

. SENSOR .

a
“ J
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K
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t=0 t=1 t=2

size and structure of the skeleton, muscle, and vessel. Our
hand, where bone, muscle, fat, and blood vessels crisscross
together to form a complex structure, is a good example. All
of these intuitive elements of body composition are directly
related to the mass, stiffness, and damping of the human body
that can be regarded as a mechanical system. Thus, we can
apply the SMD model to the human body, either part of it or
the whole. What is more, even if two people whose weight,
height, and BMI are similar, their underlying tissue composi-
tion, such as the ratio of muscle and fat, the bone size, can
be quite different (Siri 1956). This insight provides a good
possibility that takes the on-body vibration signal as vibro-
biometrics for user authentication.

As shown in Figs. 4 and 5, when a finger taps on the skin
surface, P-waves and S-waves are generated. S-waves propa-
gate in the form of ripples from the point of excitation and
mainly cause displacement of the skin surface. The longitu-
dinal waves mostly travel the soft tissues of the human body
inwards, excite the bone, and then generate new P-waves that
propagate to the skin surface. Further, the waves with higher
frequencies are more readily to propagate through bone than
soft tissue, and bone conduction can carry energy over larger
distances than that of soft tissue (Harrison et al. 2010).

t=3 t=4 t=5

Fig.5 The longitudinal wave causes internal skeletal structures to vibrate, creating new waves emanate outwards (Harrison et al. 2010)
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Fig.6 Illustration of character-
istic impedance (Xu et al. 2020)

Finger Touch

3.5 Characteristicimpedance

The concept of mechanical impedance indicates a measure of
how much a system resists the motion subjected to a driving
force. This impedance is defined as the ratio of the force to
the associated velocity of displacement. It is quite similar to
the electrical concept of resistance. The backscatter technique
utilizes the property that the radio frequency will be partially
reflected when reaching the interface between two mediums
with different resistance. When it comes to the vibration wave,
similar phenomena occur during the transmission and reflec-
tion process, where the original waveform propagates through
the contacting area between two different mediums such as the
smartphone and the human finger shown in Fig. 6. Given the
motor’s initial wave generated by the motor, the reflected wave
from the finger and the transmitted wave inside the finger are
f1(®), g,(2), and f,(¢), respectively. By denoting the character-
istic impedance of two connected medium as Z; and Z,, we
have (French 1971):

810 = % i
ht) = 720

(10)

Since the characteristic impedance is mainly determined
by the density and material type of the medium, both reflected
signal g,(#) and transmitted signal f,(¢) can be considerably
different according to Eq. 10. This provides us a hint that
we can collect the reflected signal or transmitted signal that
reveals the characteristic impedance and then infer the medium
information.

= = == Original Wave
- =+ =Reflected Wave
e=====Transmitted Wave

Vibration
Motor

4 Literature review

In this section, we summarize the remarkable literature in
the vibration-based sensing area and categorize them into
four sub-topics, namely, localization, authentication, health
monitoring and communication. In addition, a brief sum-
mary of them is provided in Table 2.

4.1 Localization

BOES (Pan 2014) is the first work that develops a geophone
prototype and evaluates the coarse-grained localization and
occupant counting methods using the footstep vibration at a
townhouse. It leveraged the relationship between the signal
impulse energy and the impulse-to-sensor distance in Fig. 7
to estimate the footstep location and yielded localization
accuracy within 90 cm. Furthermore, as shown in Fig. 8, the
system monitors the vibration energy changes in occupancy,
which can be inferred as structural information to track the
active occupant area.

Then in Mirshekari et al. (2016), the time difference of
arrival (TDoA) method is used for locating footstep-induced
vibration. This paper focuses more on vibration in the fre-
quency domain rather than in time-domain. The signals are
decomposed into frequency components using a Mexican hat
wavelet transform, and the components with high energy are
selected for accurate trilateration. Some pre-collected foot-
step samples are used for optimizing the estimated veloc-
ity, which can minimize the localization error. The system
achieved an average localization error of less than 0.21 m.
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Huang et al. (2019) propose a novel localization algo-
rithm called Energy-of Arrival (EoA), which calculates the
arrived energy ratio between geophones. It overcomes the
drawbacks of TDoA that require high sampling frequency
(e.g., 25KHz in Mirshekari et al. 2016) to estimate the time
difference. EoA algorithm no longer needs to estimate or
calibrate the wave velocity that is required in the TDoA-
based system. The evaluation result shows that an 80-per-
centile localization error below 24 cm can be achieved using
sampling frequency at 1190 Hz.

The work in Mirshekari et al. (2020) enables the floor-
vibration-based footstep detection across different struc-
tures by model transfer. Previous research has to train a
footstep model with supervised learning methods to detect
the footstep event. For addressing the effect due to the
variation of structural property, this paper use transfer
learning to minimize the maximum-mean-discrepancy
(MMD) distance between the source and target struc-
tures, as shown in Fig. 9. The experiments show that the

@ Springer
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Fig.9 Part a shows the distance between the distributions caused by different structures before projection. Part b shows the distributions where

the footstep models are aligned after projection (Mirshekari et al. 2020)

proposed approach can detect footsteps across three types
of structures with the F1 score of up to 99%.

Vibration-based indoor localization gives new inspiration
to the researcher in the area of human—computer interaction
(HCI). Not only can they leverage the vibration on the floor,
but they can also locate the vibration event on any physi-
cal planes. This vision aims to turn all the physical planes
into interactive planes for supporting more applications in
a smart space.

In Vibsense (Liu et al. 2017a), a ubiquitous keyboard
that recognizes the user’s keystroke vibration on the table is
proposed. The system utilizes a piezoelectric ceramic sen-
sor to collect keystroke vibration signals and extracts the
signal characteristics in the frequency domain for training a
support vector machine model. The precision and recall of
identifying 26 characters is 97% and 96%, respectively. In
addition, this work used active chirp signal from 300 Hz to
12 kHz to locate and identify six personal objects (including
an empty paper cup, an empty glass cup, a can of coke, a US
quarter coin, an apple, and an iPhone 5 s) by matching with
the training sample pattern.

Then in SurfaceVibe (Pan et al. 2017), the paper pre-
sented a vibration-based interaction system that supports
finger tap and swipe on several surface types. This paper
suggests that tap induced and swipe induced vibration
are dominated by surface and body waves, respectively. It
deployed four sensors in the corners of the table to cover
a square area with a side length from 40 to 100 cm. Using
TDoA methods, the tracking results show that the estimation
error of tap location is less than 3 cm, while the baseline
performance for swipe shows an average length error greater
than 5.8 cm and the average angle errors greater than 2°.

@ Springer

The human body is also a good medium for vibration
propagation. Skinput (Harrison et al. 2010) presented the
first attempt to turn the hand back into an external interface
by embed ten piezoelectric ceramic sensors in the wrist-
band. It divided the hand back into ten areas and maps them
to the T9 layout keyboard for keystroke recognition. This
fingerprint-based localization system on hand back gives an
average classification accuracy of 87.6% for ten keys. Com-
paring to Skinput, ViType (Chen et al. 2018) further reduced
the number of sensors from ten to one, and the sampling fre-
quency from 55 kHz to 600 Hz. By using back-propagation
neural networks, the average recognition accuracy in ViType
is 94.8%, with the initial training sample of 20 for each key.
The vision of above mentioned two papers is to address the
dilemma that the smartwatch screen is too small to type on.
The authors fulfill this vision in Taprint (Chen et al. 2019),
which leverages the accelerometer and gyroscope to collect
the tapping vibration. This paper overclocks the sampling
frequency from 100 to 500 Hz by modifying the Linux ker-
nel in the smartwatch and achieves a high accuracy of 96%
for twelve keys mapped onto the finger knuckles.

4.2 Authentication

Apart from localization, vibration-based authentication is
also an appealing research topic that yields many novel and
advanced authentication mechanisms. The mechanical vibra-
tion that happens in the physical world is highly dynamic.
The external excitation from a thing to the floor may vary in
terms of the hitting angle, period, mass, etc. Moreover, it is
able to extract vibro-biometrics from the on-body vibration
signals.
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Fig. 10 These figures show two people walking with different gait
patterns. a and b show differences in the distance between two feet. ¢
and d indicate the differences in the feet-floor angle. The dotted green

FootprintID (Pan et al. 2015) presents the first work uti-
lizes the footstep-induced floor vibration to infer the pedes-
trian gait for user identification. As shown in Fig. 10, the
key insight lies in finding how individual footstep vibration
signals are changed with respect to the walking speeds, step
frequency, step length, and foot—ground angle. By apply-
ing an iterative transductive learning algorithm (ITSVM),
FootprintID can achieve up to 96% accuracy with limited
training data collected by one geophone sensor.

As for authentication using on-body vibration, VibID
(Yang et al. 2016) is the first work to validate that the vibra-
tion response of the human body reflects the unique physical
characteristics of users (i.e., the mass, stiffness, and damping
discussed in Sect. 3.4). This system deploys an eccentric
rotating mass (ERM) vibration motor on the user’s arm to
generate active vibration. The receiver, an accelerometer, is
embedded in a wristband to collect the on-body vibration
response. After the analysis of vibration patterns at different
frequencies using the Random Forest algorithm, the system
can tell who is using the device in a small-scale scenario of
8 users with an identification accuracy above 91%.

In VibWrite (Liu et al. 2017b), the authors put the
active motor on the solid surface to enable user authen-
tication via analyzing the active vibration signal affected
by finger gesture (e.g., tapping PIN code and swiping lock
pattern on the surface). The proposed prototype can be
extended to any solid surface for secure access control,
such as access to a room or vehicle. Instead of performing
gestures on the vibrating surface, Velody (Li et al. 2019)
only requires the users to put one of their hands on the
surface to gain access permission. This following work

(d)

\

line also presents the center of gravity variation across different peo-
ple (Pan et al. 2015)

proposes a challenge-response biometric authentication
model against the replay attack that is not addressed in
VibWrite. As shown in Fig. 11, the authentication service
records a large set of challenge-response pairs in advance.
The system will play a new challenge when authentication
is requested and then discard it after the session. There-
fore, by making each challenge-response pair unique and
never using it again, the system will not suffer the replay
attack.

Since the vibration motor and senor are standard configu-
rations to mobile devices, some works leverage the same
characteristic of on-body vibration for user authentication
on smartwatch and smartphone.

Chen et al. (2019) exploit tap-induced on-body vibra-
tion in the frequency domain and enlarge the difference by
weighting the sensitive frequency bins. The users are able
to gain quick and secure access into the smartwatch by just
a tap on the hand back with one finger. The passive vibration
signal samples of 128 participants are input into a density-
based one-class classier (termed as DenID), yielding an
equal error rate at 2.4%.

Wang et al. (2018) extract the heartbeat biometrics with
the built-in accelerometer in a smartphone for user authen-
tication. They leverage the uniqueness of seismocardio-
gram (SCQG), which refers to the vibration of the heartbeat
response on the chest. The user attaches the smartphone to
his/her chest to collect heartbeat signals. The system is able
to identify the user within five heartbeat cycles. The evalu-
ation on 110,000 heartbeat samples from 35 participants
shows that the system achieves an equal error rate of 3.51%
for user authentication.

@ Springer
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Fig. 11 TIllustration of challenge-response biometric authentication in VELODY. The challenge indicates the active vibration from the speaker,

and the response indicates the received vibration signals (Li et al. 2019)

TouchPass (Xu et al. 2020) investigates the physical
characters of touching fingers on a smartphone generating
a 300 ms vibration signal pulse. They designed a Siamese
network-based architecture to reconstruct the extracted
features to behavior-irrelevant features. To achieve a
light-weighted authentication system that can be run on
the smartphone in real-time and save more energy, the
idea of knowledge distillation is used to compress the
network.

4.3 Health monitoring

It is not so intuitive how the vibration signal is related to
health monitoring. However, in fact, the body-induced
vibration is a good indicator that reflects the body states.
For example, we can infer from the ground vibration signal
whether the occupant is walking, sitting down, or falling
on the ground. Vibration due to body movement can also
be used as an auxiliary basis for medical diagnosis. Even
the tiny heartbeat vibrations can be monitored and achieve
measurements of heart rate and respiratory rate.

Fagert et al. (2017) presented a method for estimating
human left/right walking gait balance by collecting and ana-
lyzing the footstep vibration. By using sparsely deployed
geophone sensors, this method enables gait balance assess-
ment in a non-intrusive way, and it requires no professional
healthcare providers. The physical insight is that the vibra-
tion wave energy is a function of the footstep force, which

@ Springer

can be used to define the gait balance. By studying the gait
balance, one can learn their neurological and musculoskel-
etal conditions, overall health status, and risk of falls.

In addition to predicting the risk of falls in advance, fall
detection and alarming are also important. In G-Fall (Huang
2019), a zero false-alarm and training-free automatic fall
detection system for the elderly living alone is proposed.
Instead of detecting the threshold of the floor vibration sig-
nal, it utilizes the hidden Markov model (HMM) to recog-
nize the unique transient state of human fall. The transient
state occurs when different parts of the body impact the
floor one after another in a short time. With the assistance
of energy-of arrival (EoA) localization using three geophone
sensors, the system achieves 95.74% recognition accuracy
and reduces the false alarm rate to nearly 0%.

McCoy et al. (1987) proposed vibration arthrography,
a concept for making the medical diagnosis by analyzing
vibration patterns. As shown in Fig. 12, they placed three
accelerometer sensors on the patient’s knee skin to showed
that frequencies with degeneration were generally higher
than those found with meniscal injuries. Afterward, there
was a lot of following work to diagnosis knee joint pathol-
ogy using vibration arthrography (Kraft et al. 2019). The
dominant approach in most of the work is to analyze the
vibration patterns with time-domain, frequency-domain,
and statistical features and combine them with a classifier
to perform classification.
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Fig. 12 Subject attached to the
recording apparatus for vibra-
tion arthrography (McCoy et al.
1987)

In 2018, Sharma and Acharya (2018) chose the opti-
mal bandwidth-duration localized three-band (OBDLTB)
orthogonal wavelet filter banks (OWFB) to extract the VAG
feature. They obtained a classification accuracy of 89.89%
by applying the least-squares support vector machines (LS-
SVM). The VAG differentiation between the pathologic
states of the knee joint was proved through computer-aided
analysis (Wu 2015). Still, most of the researches can only
provide the classification result with an accuracy of around
90% between normal and abnormal knees. In Krecisz and
Baczkowicz (2018), the authors tried to classify five types
of knee joint pathology using statistical, entropy-based, and
spectral features with a logistic regression classifier and
reported 69% accuracy only.

MyoVibe (Mokaya et al. 2015) presents the first work
that recognizes the human muscle activation states during
exercises through sensing small muscle vibration. They
attach a sensor node network that consists of multiple small
form factor accelerometers on the human skin to collect
the muscle vibration data. Using the same accelerometer
sensor network prototype, the authors in MyoVibe further
proposed Burnout (Mokaya et al. 2016), which is able to
quantify skeletal muscle fatigue by applying the region mean
power frequency (R-MPF) gradient. The R-MPF correlates
the muscle vibration data with the ground truth—Dimitrov’s
spectral fatigue index gradient and provides the user with a
quantitative understanding of their skeletal muscle fatigue.

HB-phone (Jia 2016) is the first geophone-based system
that can monitor the heartbeat. The bed-mounted geophone
has a gain of 200X to detect the tiny heartbeat vibration that
travels through the mattress. The systems filter the noise

caused by various body movements such as arm swings, leg
kicks, and snoring. Then a sample auto-correlation func-
tion is applied to extract the periodicity of heartbeats. In the
realistic study of 9 subjects, the system generates an aver-
age estimation error rate at 8.25% on more than 181 h’ data.
The authors further improve the bed-mounted geophone
system (Jia 2017) and enable the simultaneous detection of
the breathing rate and heart rate for two people. Based on
the square-law demodulation approach, the median error of
the respiratory rate estimation algorithm in this paper is 0.72
beats per minute and 1.95 breaths per minute for heart rate
and breath rate, respectively.

4.4 Vibration communication

Compared with the sound signal widely propagating in
the air, the vibration signal takes solid as the transmission
medium for short-distance transmission and communication,
and the propagation range is limited. However, this does not
prevent the vibration signal from being an alternative means
of communication to the body-area network. To some extent,
the proximity of communication guarantees higher security
for the low data rate communication between implantable
or wearable devices, such as secure device pairing using
encrypted vibration signals.

OsteoConduct (Zhong 2007) transmits data through
bone conduction and demonstrates the possibility of data
transmission at 5 bits/sec between the wrist, ear, and lower
back. The measurement shows that the ultra-low-power
excitation less than 1 mW is sufficient for relatively reliable
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communication with a bit error rate of less than 10% without
being noticeable to the users.

Ripple (Roy et al. 2015) mounts a vibration motor and
accelerometer to a cantilevered metal arm, amplifying the
vibration. Through multiple frequency modulation and reso-
nance braking, the system transmits data at around 200 bps.
Then the authors push forward the system and release Ripple
II (Roy and Choudhury 2016a), which replaces the acceler-
ometer with the microphone as the receiver. By augmenting
it with a new PHY/MAC layer, the transmission throughput
achieves 150% gain (30 Kbps) than before. Even if the vibra-
tion signals attenuate through human tissues and muscles,
transmitting data at effective bit rates of 7.41 Kbps is still
possible.

The vibration signal propagating along the human body
has relatively high security. Still, it is not so lucky for the
vibration channel propagating along the physical plane or
the air. For example, (sp)iPhone (Marquardt et al. 2011)
demonstrate an application that can access the accelerometer
readings on mobile phone and then utilize such data to infer
the text input on a nearby keyboard. By calculating the rela-
tive position and distance between each keystroke vibration,
the system can recover 80% input words.

Michalevsky et al. (2014) are the first to present the fea-
sibility that the rotational motions reading of gyroscope in
the smartphone can detect the sound signals. Using pattern
recognition techniques on the extracted features of signals,
the accelerometer reading is also able to classify as spoken
keywords such as “Hello Siri” (Zhang et al. 2015). Further,
VibraPhone (Roy and Choudhury 2016b), without any train-
ing or machine learning algorithms, the recorded signal by
a vibro-motor can reveal the whole human speech with an
average accuracy greater than 80%. The recovered sound
signals can be recognized by off-the-self speech recognition
software at 60% accuracy.

4.5 Other vibration sensing applications

ViBand (Laput et al. 2016) utilizes a smartwatch with a
sampling frequency at 4000 Hz to detect the vibrations of
motor-powered objects grasped by the users. It enables the
recognition of 29 pieces of objects, which provides sufficient
information to support context-aware service to enhance
daily experiences. FingerPing (Zhang 2018) mounts a vibra-
tion speaker on the thumb to inject vibration chirps from 20
to 6000 Hz to the hand. When performing a different ges-
ture such as the American Sign Language (ASL) from 1 to
10, the distinct transmission paths from the speaker to four
receivers on the wrist can be recognized through a classifier.
Similarly, Oinput (Huang et al. 2018) employs two piezo-
electric ceramic sensors on the hand back to detect the bone-
transmitted signals when a user is typing on a QWERTY
keyboard. The system can achieve high-precision keystroke
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recognition for ubiquitous text input by adapting the anti-
noise recurrent neural network. Last but not least, Facelnput
(Guan et al. 2019) embeds a piezoelectric ceramic sensor
on the glass to collect and recognize the speech vibration.
This system addresses the problem that air-borne voice com-
mands will activate other users’ smart glasses by mistake.

5 Discussions
5.1 Impact of the environments changes

We mainly discuss the environmental impact to the vibra-
tion-based sensing system in two aspects. In the case that
vibration signals travel on the indoor floor or physical plane
(e.g., table surface), geophone sensors or piezoelectric
ceramics sensors are usually the first choices. The amplifier
gain is typically set as large as possible to cover a larger
sensing range. For example, the effective range for indoor
localization using geophone can be a radius of 10 m. There
will be many hidden noises are introduced into the system
when a specific sensing application is running. The hidden
noise sources (Zhang 2019) can come from the human activ-
ities (e.g., walking, exercising, closing doors, typing, and so
on), indoor system (e.g., vending machines, house refurbish-
ing, water system), outdoor influences (e.g., passing cars,
road maintenance, and weather). The intermittent hidden
noises will affect the performance of some applications and
need to design complex signal processing to deal with them.
One the other hand, the on-body vibration source mainly
comes from body movement, human speech, and heartbeat.
It is easy to filter out those noises because they realize in
low frequency.

5.2 Multi-sources sensing

Multi-source sensing has always been a troublesome prob-
lem in the field of intelligent sensing. There are some works
using CSI of WiFi signals or UWB devices to differentiate
and track multiple users simultaneously. Still, these methods
depend on the high-cost supports of high-resolution signals,
multiple channel/antenna deployment, and large bandwidth.
The same problem also exists in intelligent sensing based
on the vibration signal. Although one work (Shi et al. 2019)
claims that they have realized device-free multiple people
localization using geophones, the system can only separate
two users’ walking tracks. They assume that the floor vibra-
tion signal can be visually differentiated from time-domain
once the two users’ footsteps do not step at the same time.
Therefore, in practical usage, it is still infeasible to extract
the desired information from the superposition of multiple
footstep-induced vibration signals. For the moment, the
vibration signal that we get from vibration sensors (e.g.,
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geophone, piezoelectric ceramics, and inertial measure-
ment unit) is of low resolution. The coarse-grained signals
result from the intrinsic property of vibration. Typically,
the body-induced floor vibration or plane vibration travel
at the velocity of 200-300 m/s, and its frequency is mainly
around 250 Hz. The wavelength of such vibration is about
1 m, which is inferior to radio frequency (e.g., 2.4 GHz WiFi
with wavelength at 12.5 cm.) regarding signal resolution.

5.3 Detection across different structures

The majority of vibration-based sensing application is data-
driven because the vibration in the real world is extremely
dynamic and complicated. Therefore, it is nearly impossible
to model the vibration event and apply the model to solve a
specific sensing problem. This situation leads to a dilemma
that we have to spend a lot of effort and resources to col-
lect the vibration data and retrain the model when we move
the system to a new scene. It is a crucial problem of how
we can keep the system performance unchanged across dif-
ferent structures at the algorithm level. In Mirshekari et al.
(2016), the authors successfully detect the footstep-induced
floor vibration across three types of structures (e.g., wooden,
concrete, and metal deck floor with carpet) using transfer
learning. However, in reality, the building structure is ever-
changing and more than three types, which makes the map-
ping between source structure space and target structure
space trickier. In addition, the on-body vibration signal also
exhibits high diversity regarding different body structures.
Our previous work (Chen et al. 2019) that locates the finger
taps on the hand back is still a fingerprint-based system.
How to make this system user-independent (i.e., recogniz-
ing the keystrokes on hand back across different users’ hand
back structure without training) is still an open issue because
the transfer learning suffers setbacks when dealing with the
high diversity of body structure in our case.

5.4 From data-driven to model-driven

Based on the summary in Table 2, we can find that the over-
whelming majority of literature designed their system utiliz-
ing traditional machine learning frameworks, e.g., collect-
ing training samples, signal processing, feature extraction,
feature selection, and machine learning algorithm. Unlike
computer vision, we do not have sufficient data that can
cover all the application scenarios. We have to input a lot of
effort to initialize the system when we migrate it into a new
environment. Although researchers refer to many vibration
properties, as mention in Sects. 2 and 3, we can only use
those properties to explain why we can realize a specific
application. It is still unclear about the quantifiable calcula-
tion for a specific result using the vibration model in many
cases.

6 Conclusion

In the past 5 years, the emerging vibration-based intel-
ligent sensing has aroused the interest of the researchers.
A large variety of novel applications using vibration sig-
nals is presented. In this article, we have discussed more
than 40 representative literature in this area and classified
them into four categories according to their application
scenarios. Our survey has shown that vibration property
is various and can be applied to a large number of sens-
ing applications. We believe that there still many potential
properties waiting to be discovered and leveraged. This is
the first survey about vibration-based intelligent sensing,
and we hope that it can help new researchers catch up with
this area quickly and get some inspirations from this paper.
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